Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: www.elsevier.com/locate/ejmech

ԻՏվր

Research paper

Design, synthesis and biological evaluation of peptidomimetic benzothiazolyl ketones as 3CL^{pro} inhibitors against SARS-CoV-2

Hanxi Yang ^{a,b,1}, Mengyuan You ^{c,1}, Xiaoyang Shu ^{d,1}, Jingyao Zhen ^{b,e}, Mengwei Zhu ^{f,g}, Tiantian Fu ^{f,g}, Yan Zhang ^b, Xiangrui Jiang ^{b,e}, Leike Zhang ^{d,h}, Yechun Xu ^{b,c}, Yumin Zhang ^{d,***}, Haixia Su ^{b,**}, Qiumeng Zhang ^{b,*}, Jingshan Shen ^b

^a College of Chemistry, Zhengzhou University, 100 Kexuedadao Road, Zhengzhou, 450001, China

^b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China

^c School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China

^d State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China

^e University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China

^f College of Pharmacy, An Hui University of Traditional Chinese Medicine, Hefei, 230012, China

^g Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong, 226133, China

^h Hubei Jiangxia Laboratory, Wuhan, 430200, China

ARTICLE INFO

Keywords: Peptidomimetics Benzothiazolyl ketone 3CL^{pro} inhibitor Pharmacokinetic properties SARS-CoV-2

ABSTRACT

A series of peptidomimetic compounds containing benzothiazolyl ketone and [2.2.1] azabicyclic ring was designed, synthesized and evaluated in the hope of obtaining potent oral 3CL^{pro} inhibitors with improved pharmacokinetic properties. Among the target compounds, **11b** had the best enzymatic potency (IC₅₀ = 0.110 μ M) and **11e** had the best microsomal stability ($t_{1/2} > 120$ min) and good enzyme activity (IC₅₀ = 0.868 μ M). Therefore, compounds **11b** and **11e** were chosen for further evaluation of pharmacokinetics in ICR mice. The results exhibited that the AUC_(0+t) of **11e** was 5143 h*ng/mL following single-dose oral administration of 20 mg/ kg, and the F was 67.98%. Further structural modification was made to obtain compounds **11g**-11j based on **11e**. Among them, **11j** exhibited the best enzyme inhibition activity against SARS-CoV-2 3CL^{pro} (IC₅₀ = 1.646 μ M), the AUC_(0-t) was 32473 h*ng/mL (20 mg/kg, po), and the F was 48.1%. In addition, **11j** displayed significant anti-SARS-CoV-2 activity (EC₅₀ = 0.18 μ M) and low cytotoxicity (CC₅₀ > 50 μ M) in Vero E6 cells. All of the above results suggested that compound **11j** was a promising lead compound in the development of oral 3CL^{pro} inhibitors and deserved further research.

1. Introduction

COVID-19 is an acute respiratory infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which has engendered a huge threat to the global economy and public health [1,2]. The ORF1a and ORF1b genes account for about 2/3 of the total length of the SARS-CoV-2 genome and encode two polyproteins [3,4]. The two polyproteins can be cleaved by 3C-like protease (3CL^{pro}) and Papain-like protease (PL^{pro}) to form sixteen functional proteins [5,6]. It is worth mentioning that 3CL^{pro} is responsible for the cleavage of 11 sites

on polyproteins and plays an essential role in viral replication and propagation [7,8]. Besides, it has been proven that the catalytic domains of different coronaviruses $3CL^{pro}$ are highly conservative, thus $3CL^{pro}$ inhibitors may have a broad spectrum of anti-coronaviral activities [9, 10]. In addition, no human protease has high structural homology with the $3CL^{pro}$ of SARS-CoV-2 [11,12]. Therefore, given the indispensable role of $3CL^{pro}$ in the viral life cycle [13], the highly conserved structure [14], and the less related homologous protein in humans [15], $3CL^{pro}$ is an important target for COVID-19 drugs development.

Many covalent peptidomimetics have been reported as 3CL^{pro}

https://doi.org/10.1016/j.ejmech.2023.115512

Received 11 March 2023; Received in revised form 1 May 2023; Accepted 22 May 2023 Available online 23 May 2023 0223-5234/© 2023 Elsevier Masson SAS. All rights reserved.

^{*} Corresponding author.

^{**} Corresponding author.

^{***} Corresponding author.

E-mail addresses: ymzhang@wh.iov.cn (Y. Zhang), suhaixia1@simm.ac.cn (H. Su), qmzhang@simm.ac.cn (Q. Zhang).

¹ These authors contributed equally to this work.